在产品运营的工作中,数据分析常会遭遇诸多非常让人困扰的情况,例如:产品运营面对的数据量动辄百万级、千万级,带来的就是分析速度急剧下降,跑个数等一两天时间已经是很理想情况;另外,在很多场景下,我们都只能拿到部分数据(样本),而无法获取全量数据(总体)。在这种情况下我们就必须通过分析非常小量样本的特征,再用这些特征去评估海量总体数据的特征,可以称之为样本检验。
推断型统计的核心就是用样本推测总体。在实际生产环境中,可能无法获得所有的数据,或者即便获取了所有的数据,但是没有足够的资源来分析所有的数据,在这种情况下,我们都需要用非常小量的样本特征去评估总体数据的特征,这其中的一项工作就是参数估计。
参数估计应用的场景非常的多,例如:
确定分析的置信水平
确定估计的参数类型
计算参数估计的区间
最终得到的估计区间就是:$ [样本均值 - A, 样本均值 + A] $。